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Personality Inventories
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q Personality inventories that measure personality traits under the (Big) Five 
Factor Model are widely used in psychological research
q Predicting well-being from personality (Anglim et al., 2020)

q Changes in personality traits during the pandemic (Sutin et al., 2020)

q Association between personality and student achievement (Meyer et al., 2023)

q Influence of personality traits on attitudes towards AI (Kaya et al., 2024) 

q Popular personality inventories include NEO PI-R (Costa & McCrae, 2000), BFI-2 (Soto & 

John, 2017), IPIP-NEO-120 (Johnson, 2014), and variants of these

Five Factor Model

Openness Conscientiousness Extraversion Agreeableness Neuroticism
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Independent Cluster Structures in Personality Research
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Visual representation of IC-CFA for conscientiousness domain of the IPIP-NEO-120 

Conscientiousness facets
𝜂!: Self-efficacy 
𝜂": Orderliness 
𝜂#: Dutifulness 
𝜂$: Achievement-striving 
𝜂%: Self-discipline 
𝜂&: Cautiousness

q It is common to analyze responses from personality inventories with 
confirmatory factor analysis under an independent cluster structure  
(McDonald, 2013)

q IC-CFA models assume that indicators load onto a single factor
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Are Independent Cluster Structures To Restrictive?

q Quantitative methodologists have argued that IC-CFA is overly restrictive
q It is unlikely that indicators are “pure” measures of a factor (Asparouhov et al., 

2015) 

q Item residuals likely covary (Zyphur & Oswald, 2015)

q IC-CFA models in applied research fail to meet acceptable fit criteria 
(Marsh et al., 2014)

What Happens if we impose IC Structures when we Shouldn’t?
q Factor correlations are overestimated
q Biased structural coefficients when predicting external variables
q Error propagation (other parts of the model “absorb” the error)

What are Some Solutions/Alternatives?

q Allowing cross-loadings
q Estimating within-factor residual covariances
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Cross-loadings (CLs)

q Cross-loadings reflect the hypothesis that indicators are never “pure” 
reflections of a factor and load onto more than one factor
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Residual Covariances (RCs)

q Residual covariances capture any otherwise unmodeled sources of 
variation not attributable to the factor (e.g., similarities in wording)
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Challenges with Estimating Models with CL or RCs 

q Estimating CL or RCs is difficult when models are estimated with maximum 
likelihood 
q Identification issues (models can become unidentified)
q No way to ”control” the amount of influence the CL or RCs have on 

estimates
q Number of parameters can increase substantially

Bayesian Structural Equation Models (BSEM)

q BSEM leverages the Bayesian framework to estimate CLs and/or RCs

q Small-variance priors (aka informative priors) to reflect hypotheses that 
CLs/RCs are near zero but not exactly zero
q Researcher can choose what near zero means by specifying a value for the 

prior variance
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Prior Informativeness 95%

𝑁(0, 0) Extremely 
informative

0

𝑁(0, 0.01) Informative ±0.196

𝑁(0, 0.05) Informative ±0.438

𝑁(0, 0.10) Informative ±0.619

𝑁(0, 4) Uninformative ±3.919

Examples of Different Small-Variance Priors
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What’s the Best Way to Represent the Structure of Personality Domains?

Conscientiousness facets
𝜂!: Self-efficacy 
𝜂": Orderliness 
𝜂#: Dutifulness 
𝜂$: Achievement-striving 
𝜂%: Self-discipline 
𝜂&: Cautiousness
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!' Bifactor
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Correlated factors
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!'Higher-order
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Research Questions

q Research question 1: Does BSEM with small-variance priors offer an 
improvement over IC-CFA in personality inventories with respect to 
model fit indices?

q Research question 2: According to BSEM model fit indices, which factor 
structure (correlated factors, bifactor, higher-order) fits the data the 
best?



Methods

q Data Source: 
International Personality 
item Pool (IPIP)

q IPIP-120-NEO is a 
public version of the 
NEO PI-R 

q Open-access dataset 
q 440,000+ responses

q Random sample of 
𝑵	 = 	𝟓𝟎𝟎	individuals 
from US analyzed in 
this study 

q Conscientiousness 
factor
q Six 4-item facets

q 18 Bayesian models 
fit in Mplus v8.8

Conscientiousness 
Facet

Self-efficacy

Orderliness

Dutifulness

Achievement-striving

Self-discipline

Cautiousness

Factor 
Structure

Model 
Type

Correlated 
factor

IC-CFA

Bifactor CLs only

Higher-
order

RCs 
only

q For CLs models, prior 
was N(0, 𝑣)	where 𝑣 =
	0.005, 0.01, 0.02, 
0,03; for RCs models, 
prior was IW(1, 30)

q Outcomes (model fit):
q Bayesian 

information 
criterion (BIC)

q Deviance 
information 
criterion (DIC)

q Comparative fit 
index (BCFI)

q Tucker-Lewis index 
(BTLI)

q Root mean square 
error of 
approximation 
(BRMSEA)
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Results

q IC-CFA < BSEM-RC < BSEM-CL
q Bifactor models fit better (marginally) than CF and HO models
q Increasing variance prior in BSEM-CL models had almost no impact in 

bifactor and HO models; slight improvement in CF models
q Results from TLI were nearly identical to CFI
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BCFIBCFI is a measure of goodness of fit; larger values = better fit



q IC-CFA > BSEM-RC > BSEM-CL
q Bifactor models fit better than CF and HO models
q Increasing variance prior in BSEM-CL models had differential impact 

depending on factor structure
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BRMSEABRMSEA is a measure of badness of fit; larger values = worse fit

Results
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BIC

q BIC preferred IC-CFA over BSEM-RC and BSEM-CL models
q BIC preferred HO IC-CFA over CF IC-CFA and bifactor IC-CFA
q Within factor structure, BIC values for BSEM models were mostly consistent

BIC penalizes models based on complexity; smaller values = better fit

Results
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q According to DIC, IC-CFA fit worse than BSEM
q Out of all 18 models, bifactor BSEM-CL with N(0, 0.02) prior fit best
q All BSEM-CL models fit better than BSEM-RC models

DIC penalizes models based on complexity; smaller values = better fit

Results
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Discussion & Implications

Limitations

Future Research

q We focused on one personality domain (conscientiousness), not all five
q Possible that we are overfitting data in BSEM-CL and BSEM-RC models
q Only considered measures of model fit (theory should take precedence)

q Do we really need all those CLs and/or RCs? 
q Do we see the same trend in other personality domains?
q Are slight increases in model fit practically important and meaningful to 

substantive researchers? 

q We found the BSEM-CLs provided the best fit across factor structures
q We found evidence that bifactor structures fit conscientiousness data better 

than CT and HO factor structures when SEM-based fit measures were 
considered; BIC preferred IC-CFA; DIC preferred bifactor
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Factor Structure Model Type # Parameters

Correlated Factor

Independent Clusters 87

BSEM CLs 207

BSEM RCs 123

Bifactor

Independent Clusters 96

BSEM CLs 216

BSEM RCs 133

Higher-order
Independent Clusters 78

BSEM CLs 198

BSEM RCs 198

Number of Parameters in Each Model
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Facet Mean (SD) Reliability Alpha

Self-efficacy 4.02 (0.12) 0.767

Orderliness 3.09 (0.28) 0.837

Dutifulness 3.97 (0.44) 0.669

Achievement-striving 3.85 (0.22) 0.738

Self-discipline 3.44 (0.29) 0.669

Cautiousness 3.23 (0.10) 0.874

Total 3.60 (0.44) 0.898

Descriptive Statistics


